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The number of selfavoiding rings on a lattice 

M F SYKESt, D S McKENZIES, M G WATTS5 and J L MARTINt 
t Wheatstone Physics Laboratory, University of London, King’s College, UK 
1 Queen Elizabeth College, University of London, UK 

MS received 24 August 1971 

Abstract. The numbers of n step selfavoiding returns to the origin are given up to n = 14 
for the face-centred cubic lattice, n = 16 for the body-centred cubic lattice, n = 18 for the 
triangular lattice, n = 20 for the simple cubic lattice and n = 26 for the square lattice, 
inclusive. The technique used to obtain the data is described in outline. 

1. Introduction 

It is the primary purpose of this paper to report some numerical results for the number 
of selfavoiding rings on a crystal lattice (table 3). These numbers have direct application 
to the lattice model of a polymer (Hiley and Sykes 1961, Martin et a1 1967), to the specific 
heat of the Ising model (Rushbrooke and Eve 1962, Sykes et a1 1967,1972~) and are also 
required in the derivation of susceptibility expansions for the Ising model (Sykes 1961, 
Sykes et a1 1972a, 1972b). Following the literature we denote the number of n step self- 
avoiding returns to the origin by U, ; for a regular lattice U, = 2 n p , ,  where p ,  is the number 
of embeddings per site of a selfavoiding ring (or polygon). The determination of suc- 
cessive U, is a problem of classic difficulty (Wakefield 1951, Domb 1960). We do not 
give a detailed account of our calculations ; rather we wish to communicate the broad 
outlines of the technique. The technique is of interest in itself and can be applied to 
other lattices and to other enumerative problems. 

2. Direct method 

The direct method of obtaining the number of rings on a lattice consists in counting all the 
possibilities ; computer enumeration seems the only practical method for large rings. 
Since the first application of computers by Rushbrooke and Eve (1959) very little progress 
has been made in overcoming the serious obstacle presented by the rapid increase in the 
number of rings with the number of steps. 

To take a specific example, the direct enumeration of the number of 1 l-step returns 
on the face-centred cubic lattice using the fastest available computer is estimated to take 
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several hours and the time increases by a factor of about nine at each additional step. 
By fully exploiting the symmetry of the lattice it is possible to reduce the computer time 
needed by a factor which for the face-centred cubic lattice cannot exceed 96. The sym- 
metry of the initial step is twelvefold and this economy can be improved upon by 
taking account of any symmetry in subsequent steps. For example, the 1404 possible 
choices of the first three steps fall into 21 sets, and only one representative of each set 
need be counted ; in this way computer time is reduced by a factor of about 1404/21 = 67. 
This is already a substantial saving, and classification of further steps becomes rapidly 
less worthwhile. 

Using the three-step classification the value u I 2  = 3 235 366 752 was obtained as a 
result of an enumeration of 47 392 668 embeddings on a KDF9 computer at the National 
Physical Laboratory at Teddington in 1967 using a program developed by one of us 
(JLM). The total time was 3 h 13 min, implying a counting rate of just under a quarter 
of a million successes per minute. Using the same procedure, u13 would require some 
28 h and ~ 1 4  some 243 h. Only the use of a faster computer would result in further time 
economies but since the number of rings to be enumerated is increasing by a factor of 
nearly nine at each new step there are obvious limitations to the method. It is desirable 
to make the most efficient use of the available computer time; to do this we have pro- 
ceeded indirectly, as described in the next section. 

3. Indirect method 

The indirect method we have used is based on a study of the distribution of selfavoiding 
walks which end at points close to the origin. We take the face-centred cubic lattice as an 
example. If we denote the lattice sites by Cartesian coordinates the lattice consists of all 
points (x, y, z )  for which x, y and z are integers and x + 4’ + z is even. The technique is to 
determine the number of selfavoiding walks of n steps, denoted by b,(x, y ,  z ) ,  to each 
point for two values of n, say r and s, and to form the sum 

If r is small the distribution need only be determined for points close to the origin. The 
sum B(r, s) includes all the rings corresponding to U,+, together with certain overlaps; 
the counting of these overlap configurations requires less computer time and the rings 
can be calculated by subtracting the failures in (3.1). We illustrate the method by giving 
some details of the calculation of u I 3  and u14 for the face-centred cubic lattice. 

We first construct table 1, which gives the number of ten-step selfavoiding walks to 
each of the 15 distinct classes of point also accessible in 4 steps. The computer program 
earlier used to count rings, derived these data in 84 h ; the twelve-fold starting symmetry 
is lost if the end point of a walk is specified but the number of initial vectors can usually be 
reduced by some symmetries. Details of the initial and final vectors were recorded. 
We next constructed table 2, which gives the number of eleven-step selfavoiding walks 
to the 8 distinct classes of point accessible in 3 steps. By direct enumeration this would 
take about 40 h ;  however if each walk of table 1 is extended by one further step, which is 
not an immediate reversal, the resulting distribution will correspond to only two types 
of walk : 
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a : selfavoiding walk 

Table 1. 

Typical point Symmetry b, ,  

12 
6 
24 
12 
24 
8 
48 
12 
6 
24 
24 
24 
24 
48 
12 

31484244 
36360872 
37179840 
37164700 
36765592 
35450940 
34063492 
30630980 
32637592 
30772624 
28859590 
26852148 
24999738 
23 121298 
17843074 

8 :  tadpole-type walk 

Walks of type B are less numerous than those of type c1 and by counting type p directly, 
and subtracting off, we obtain the data in table 2. The entry for the point (0, 1, l )  is of 
course directly related to u I z .  

Table 2. 

Typical point Symmetry b,  1 b2 b,  

0,L 1 12 269613896 4 264 
o,o, 2 6 312284536 4 144 
1, 1,2 24 320861 342 2 432 
0,2,2 12 322624804 1 144 

216 0,1,3 24 321262541 - 

48 2,2,2 8 31241 1672 - 
144 1,273 48 302790797 - 

12 0,3,3 12 277824572 - 

We next form the sum B(2, l l )  over all points ; only the four classes within two steps 

B(2, l l )  = 39709137936 (3.2) 

of the origin contribute. From table 2 
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and this total is made up of three possible combinations of the two bridges : 

Type Total number of cases 

B 

X 4 
28074857616 

1 597052 1 12 

The total number of cases for A, which is just u13, is obtained by elimination. The 
number of cases for B can be calculated ; the number for C is found by computer. 

To calculate u14 the sum 

B(3,l l)  = 432541351992 (3 .3)  

is calculated from table 2. From this number must be subtracted all the possible in- 
tersecting pairs. There are now ten fundamental combinations represented in outline 
by : 

A certain amount of computer time is needed to derive the extra configurational 
information; to derive uI4 for the face-centred cubic lattice we used about 20 h which, 
although an improvement on the some 243 h estimated for the direct method, still 
represents a substantial amount. Essentially the economy has been effected by using 
computer enumeration of failures, which are less numerous, rather than successes. The 
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technique closely parallels the chain counting theorem (Sykes 1961, Martin and Watts 
1971) used to estimate the number of selfavoiding walks recursively. Recently a 
generalization of this recurrence relation has been obtained (JLM) and incorporated 
in a computer program (MGW) : We have used this program, and the technique out- 
lined above, to derive data on other lattices. 

4. Summary 

We conclude by summarizing in table 3, all the available data for five crystal lattices. So 
long as such data are obtained by direct enumeration the techniques we have outlined 
will always effect some economies and enable the available computer time to be used to 
the best advantage. 

Table 3. 

SQ sc BCC T FCC 

U 3  

U4 

U 5  

U 1  

U8 

U9 

U10 

U1 I 

U12 

U14 

u6 

u13 

u15 

u 1 6  

'17 

U18 

U20 

U 2 2  

'24 

u 2 6  

8 

24 
- 

112 

560 

2976 

- 

- 

16464 

94016 

549648 
3273040 
19781168 
12 1020960 
748039552 

- 

- 

- 

24 

264 

3312 

48240 

762096 

12673920 

218904768 

3891176352 
70742410800 

- 

- 

- 

- 

- 

- 

- 

- 

96 

1776 

43776 

1237920 

37903776 

1223681760 

41040797376 

- 

- 

- 

- 

- 

- 

- 

12 
24 
60 
180 
588 
1968 
6840 
24240 
87252 
3 18360 
1173744 
4366740 
16370700 
61780320 
234505140 
894692736 

48 
264 
1680 
11640 
86352 
673104 
5424768 
44828400 
3778 10928 
3235366752 
28074857616 
2463 532 14240 
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